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a b s t r a c t 

Although Generative Adversarial Networks (GAN) have shown remarkable performance in image gener- 

ation, there exist some challenges in instability and convergence speed. During the training, the results 

of some models display the imbalances of quality within a generated image, in which some defective 

parts appear compared with other regions. Different from general single global optimization methods, 

we introduce an adaptive global and local bilevel optimization model (GL-GAN). The model achieves the 

generation of high-resolution images in a complementary and promoting way, where global optimization 

is to optimize the whole images and local is only to optimize the low-quality areas. Based on DCGAN, 

GL-GAN is able to effectively avoid the nature of imbalance by local bilevel optimization, which is ac- 

complished by first locating low-quality areas and then optimizing them. Moreover, through feature map 

cues from discriminator output, we propose the adaptive local and global optimization method (Ada-OP) 

for interactive optimization and observe that it boosts the convergence speed. Compared with the current 

GAN methods, our model has shown impressive performance on CelebA, Oxford Flowers, CelebA-HQ and 

LSUN datasets. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Generative adversarial networks [1] are a powerful class of 

mage generation compared with VAE [2] and flow models [3] . 

owever, they may suffer from several issues such as model 

ollapse, non-convergence and instability. Recently, in order to 

ddress above mentioned challenges, several solutions have been 

roposed based on the new network architectures [4–6] and 

he implementation of stability techniques [7–9] . Most solutions 

mploy single global optimization to generate image and neglect 

he local parts, which causes some patches of image are low qual- 

ty. Self-Attention GAN(SAGAN) [10] incorporates a self-attention 

echanism into the design of both networks in order to capture 

ocal and global dependencies of the target distribution. In this 

ork, we propose an adaptive global and local bilevel optimization 

o balance the global and local distribution of the target. 

.1. Problems and motivations 

Generally, the synthetic image quality is variable. From the 

ower quality synthetic images, we observe that some images 
∗ Corresponding author. 

E-mail address: jimmy_xiang@mail.hzau.edu.cn (J. Xiang). 

t

s

e

ttps://doi.org/10.1016/j.patcog.2021.108375 

031-3203/© 2021 Elsevier Ltd. All rights reserved. 
how quality imbalance performance within a sample [4,7,11] . In 

hort, the other areas of the generated image show impressive 

erformance except for some small range poorly portions(We call 

t the phenomenon of low quality images). Furthermore, this phe- 

omenon exists during the training in some GAN model(see Fig 1 ). 

e realize that this phenomenon is an obstacle to generating 

igh-quality images and keeping optimization stability. And it is 

lso one of the factors for the decrease in convergence speed. On 

he other hand, the low training efficiency has always been a chal- 

enge in the GAN field [12,13] . Pointing to the quality unbalance 

ssue, the paper makes an intuitive analysis: the reason is that 

he existing models generally use a single measurement standard 

known as the global optimization mode) to evaluate the quality 

f the whole image, so it is relatively difficult to optimize some 

etails. For example, some models [14,15] excel at synthesizing im- 

ges with global structure (e.g., image outline, the location of eyes 

nd the hairstyle in face); while it fails to focus on some details, 

uch as artifact, distorted and uncoordinated regions. In practice, 

his in turn also can be a reason why some early GAN models 

4,7,11] only can generate relatively low-quality images. Some of 

he later models [12,13,16] well leverage the structural superiority 

o pay more attention to small low-quality areas by increasing 

tructural complexity but it is at the cost of low computational 

fficiency. Thus, there is a trade-off between high-quality image 

https://doi.org/10.1016/j.patcog.2021.108375
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108375&domain=pdf
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Fig. 1. Location about low-quality areas of generated images on CelebA-HQ256 dataset. The color from blue to red indicates that the quality of region is from good to bad. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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eneration and high training efficiency. It is of great significance 

n the field of image generation to improve training efficiency on 

he premise of ensuring the quality of image generation. 

.2. Contributions 

In this work, we propose an adaptive global and local bilevel 

ptimization model(GL-GAN), which applies the local bilevel opti- 

ization model with a traditional global optimization model. The 

ocal bilevel optimization model is only to optimize the poor qual- 

ty portion in a image and the global model optimizes the whole 

mage. Local optimization and global optimization are carried out 

nteractively, hence the quality of local and global keeps balance 

nd the training efficiency is also accelerated. Inspired by Patch- 

AN [15] , the feature map(it can also be called feature matrix) 

s treated as the discriminator’s output for subsequent filtering of 

ow-quality areas. Different from PatchGAN with small size of the 

eature map, the feature map with a larger size is adopted in our 

aper, so that the measured receptive field is smaller and more re- 

ned. According to the feature map, the quality measure of each 

rea is obtained in an image. Therefore the local bilevel optimiza- 

ion model can be regarded as a reliable guiding strategy for gen- 

rator optimization by accurately capturing the low-quality areas 

f the sample firstly and then only optimizing the captured ar- 

as by updating the generator parameters. The local optimization 

odel realizes the refinement of the generated region inside the 

mage, thus greatly improving the generated performance. To sta- 

ilize training, we investigate the spectral normalization and apply 

he local-norm to our model. 

In addition, we conduct the adaptive global and local bilevel op- 

imization method(Ada-OP) based GL-GAN which coordinately op- 

imizes the whole and local of the image. In the paper, the stan- 

ard deviation between elements within the feature matrix is used 

s an index to measure local quality balance nature in an im- 

ge(we call it the local standard deviation). We argue the mean 

f elements within a feature matrix as the whole quality measure. 

hen the quality standard deviation between images is regarded as 

lobal quality merit(we call it the global standard deviation). When 

he global standard deviation is greater than a certain value (this 

ndicates that there is a wide range unbalance area), the global op- 

imization is performed, otherwise, the local bilevel optimization 

s enforced. And the region scope of local optimization is divided 

nto three levels according to the specific value. The approach is 

nspired by the painter’s painting skills, i.e., a rough description 

f the whole is presented firstly, and then the local refinement 

s finished. Through Ada-OP, high-quality images are generated in 

 complementary and promoting way and the computational effi- 

iency is greatly improved, which provides an approach to realize 

he balance between image quality and training efficiency. 

Extensive experiments have been conducted on CelebA, CelebA- 

Q (see Fig 2 ) and LSUN datasets, which validate the effectiveness 

f GL-GAN in the generation of high-quality images and the im- 

rovement of training efficiency. During applying Ada-OP, local and 
2 
lobal optimization is implemented adaptively to perfect local and 

hole quality of images respectively, which improves the speed of 

onvergence and reduces the cost of training. The ablation experi- 

ent is carried out on CelebA dataset for our model. Source code 

an be found at https://github.com/summar6/GL-GAN . 

.3. Organization 

The remainder of this paper is organized as follows. In 

ection 2 briefly introduces the related works. Then, in Section 3 , 

e describe the GL-GAN model. The experiments are shown in 

ection 4 . Finally, Section 5 draws the conclusions. 

. Related work 

.1. Generative adversarial networks 

GANs [1] have become a central part of generation tasks com- 

ared with other models. In the early development of GAN, most 

esearchers explored various types of methods to further im- 

rove the generation quality and training efficiency. In terms of 

et architecture, DCGAN [4] converts the full connection layer 

nto the convolution layer, which greatly improves the genera- 

ion performance. VAE/GAN [5] combines the Variational Autoen- 

oder with the generative adversarial net, in which the learn- 

ng characteristic representation in the GAN discriminator is used 

s the basis for VAE reconstruction goal. In loss function, F- 

AN [17] constructs various loss function by the general F di- 

ergence. LS-GAN [18] adapts the least square loss function as 

bject to optimize model. CGAN [11] and InfoGAN [19] both 

se conditional information as input to realize accurate learning. 

izuka et al. [20] use global and local context discriminators to 

rain the image completion network for inpainting. Loss-Sensitive 

AN [21] trains a generator to create more realistic images by min- 

mizing the boundaries between the real and fake samples. 

In the aspect of maintaining stability, the main purpose is to 

tabilize training by ensuring models’ Lipschitz continuity, which 

otivates the development of weight clipping [7] , gradient penalty 

8] and spectral normalization [9] . Meanwhile, WGAN-QC [22] pro- 

oses an optimal transport regulator (OTR) based on the theory of 

econdary transport cost to stabilize training. Through the analy- 

is of Dirac-GAN, [23] shows the necessity of absolute continuity 

or convergence. Al-Dujaili et al. analyse the effect of co-evolution 

or understanding and improving the gradient-based learning dy- 

amics [24] . CR-GAN [25] introduces a consistency regularization 

echniques, which augments images with semantic-preserving aug- 

entations and penalizes the sensitivity of the discriminator. Fur- 

hermore, ICR-GAN [26] applies forms of consistency regularization 

o the generated images, the latent vector space, and the generator 

o achieve further performance gains. The above model is great in 

raining efficiency, but there is still much margin for improvement 

n image generation quality. 

Recently, some models greatly improve the image quality with 

he cost of computing source. The Pix2pixHD model [27] gen- 

https://github.com/summar6/GL-GAN
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Fig. 2. Generated images on CelebA-HQ256 dataset by GL-GAN. 
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rates high-resolution photo-realistic from semantic label maps 

sing conditional GANs. The model includes a new multi-scale 

enerator and discriminator architectures with a novel adversar- 

al loss. BigGAN [16] , which adapts the orthogonal regularization 

ethod and timely truncates the input prior distribution, greatly 

mproves GAN’s generating performance. Progressive GAN [13] and 

tyle-GAN [12] adapt progressive growth method to train GAN 

hrough layer-by-layer to generate high-resolution images. MSG- 

AN [28] maintains the overlap in the supports of the real and 

ake distributions by allowing the flow of gradients from the 

iscriminator to the generator at multiple scales, which pro- 

ides a stable approach for high resolution image synthesis. Jin- 

in Liu et al. manage to generate small codes in latent space in- 

tead of large images and adopt two-stage way to generate high- 

esolution image [29] . IP-GAN [30] employs a cascading rejection 

CR) module for discriminator so as guiding the generator effec- 

ively. StyleALAE [31] proposes adversarial latent autoencoder to 

ddress entanglement in a adversarial way and achieve good per- 

ormance. In images completion task, Qiang Wang et al. [32] incor- 

orate deep generative adversarial networks with a Laplacian pyra- 

id mechanism to recover the spatial information of missing face 

egions in a coarse-to-fine manner. Uras Mutlu et al. [33] present 

n encoder working in the inverse direction of the generator to 

rovide auxiliary reconstruction losses as hints for a better gen- 

rator. CG-GAN [34] applies generative and evolutionary computa- 

ion to allow casual users to interactively breed and edit faces. Guo 

t al. investigate the perturbation on the generator’s input and de- 

elop a smooth generator to generate stable and high-quality im- 

ges [35] . MGO-GAN [36] learns a mapping function parameterized 

y multiple generators to overcome mode collapse. 

.2. Feature representation in GAN 

Feature map has been a very concerned concept that can 

apture a specific feature(e.g.,style, figure, location) in an image. 

ix2Pix [15] proposes the PatchGAN, which uses feature map to 

easure quality of region within a image. Several early models 

ainly apply the feature map information to achieve style transfer, 

hich is realized by the loss function [37,38] . StarGAN [14] and 

RPAN [39] both take the feature map information as an area’s 

uality measure in a sample, which helps with generating high- 

uality details. SAGAN [10] learns to efficiently find global, long- 

ange dependencies within the feature map of images through the 

elf-attention mechanism. Nevertheless, there are some limits in 

odels, including applying the feature map of small size and large 

omputational cost. In this work, we regard the local information 

ithin the feature map as a basis to process the adaptive global 

nd local bilevel optimization. 

. Adaptive global and local bilevel optimization GAN 

Most GAN-based models aim at measuring the whole image 

uality by the global optimization method, which is mainly im- 
3 
lemented by the output probability of discriminator. Global op- 

imization mode roughly focuses on the quality of the overall area 

y a single value, thus it is nontrivial for some local details within 

n image to fine modify. 

In this section, we propose an adaptive global and local bilevel 

ptimization model, which can guide the generator to reason- 

bly modify parameters based on the max-min two-player game 

f GAN. Although the proposed method inherits from the idea of 

atchGAN, GL-GAN adopts a larger size feature map instead of the 

mall size, so that the measured receptive field area is smaller and 

ore refined. Moreover, we employ global and local bilevel op- 

imization to training the model. The approach can balance the 

lobal and local distribution of the target. 

.1. Feature map 

By analyzing some samples generated by GANs models, we ob- 

erve that there are always some low-quality areas within an im- 

ge. To explicitly illustrate this phenomenon, the hot maps about 

ow-quality areas are presented (see Fig 1 ), where the red areas 

enote the low-quality regions. We can observe that the red areas 

ontain artifacts, distorted and poor quality regions of images. And 

he other areas is perfect in performance. Therefore, we argue that 

he quality distribution within a synthetic image is unbalanced. 

Considering the single output of discriminator as the whole im- 

ge quality metric in some models, we regard that using the out- 

ut obtained by a patch model to represent the receptive field 

evel quality metric within an image is also reasonable. The patch 

odel inherits from the idea of PatchGAN in [15] . To capture the 

mall range low-quality details, we establish a discriminator model, 

hose output is a feature matrix: 

 h ×w 

= D ϕ (x ) (1) 

here D ϕ represents the discriminator with parameter ϕ and x 

s a sample. The output of discriminator y h ×w 

∈ R h ×w is a matrix, 

here every element in the matrix corresponds to a receptive field 

f an image. Specifically, y i, j , which is an element in matrix y h ×w 

,

enotes the quality evaluation of the i-th row and the j-th column 

eceptive field. Different from the PatchGAN with small size fea- 

ure map, our output size is larger, which benefits measuring the 

eceptive field in a smaller area and making the optimization more 

efined. 

The adaptive global and local bilevel optimization model is to 

ptimize the generator parameters in the global and local perspec- 

ives. In order to carry out the method, we first build the assess- 

ent model of receptive field level for discriminator: 

ax 
ϕ 

E x ∼P d 
[ f (D ϕ (x ))] − E G θ (z) ∼P g [ f (D ϕ (G θ (z)))] (2) 

here P d , P g respectively denote the distribution of real samples 

nd generated samples. G θ denotes the generator with parame- 

er θ . f : R d −→ R is an operation function to the output of the

iscriminator, such as the linear function and the nonlinear func- 

ion, which is utilized to get various types of loss functions, where 
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e choose the hinge-loss among all the optimization formulas. The 

odel target is the same as the original model, which is to distin- 

uish the generated images from the real images. Hinge-loss en- 

bles the generated image to be as separate from the real image 

s possible. There is an interval between the two. Ideally, the real 

mage and the generated image are located on either side of the 

nterval to facilitate image separation and avoid gradient crash due 

o the large values. According to the above object (2) , hinge-loss is 

epresented by: 

in 

ϕ 
E x ∼P d 

[ max (0 , 1 − D ϕ (x ))] + E G θ (z) ∼P g [ max (0 , 1 + D ϕ (G θ (z)))] 

(3) 

uring training discriminator, the value D ϕ (x ) should be greater 

han or equal to 1 as far as possible when x ∼ P d . When x ∼ P g ,

he value D ϕ (x ) should be smaller than or equal to -1. So that the

oss as small as possible, and model can effectively distinguish the 

enerated image and the real image. 

.2. Local bilevel optimization model 

Based on the feature map mentioned in Section 3.1 , we con- 

truct a local bilevel optimization model, which optimizes the local 

ow-quality areas of the generated image by the bilevel method. 

he local bilevel optimization model first selects the low-quality 

egion and then optimizes the generator parameters about the low 

uality region. The defective regions are first captured by dot mul- 

iplying the output of discriminator with a mask matrix m 

∗, where 

he mask matrix(it is composed of 0 and 1) is obtained by inner 

evel optimization (see Fig 4 ). Then the generator ( G θ ) optimizes 

he low-quality areas by using gradient descent algorithm. 

b ject1 = min 

θ
E z∼P z [ max (0 , 1 − m 

∗
� (D ϕ (G θ (z))))] 

s.t. m 

∗ ∈ arg max 
m ∈ M 

∑ 

h,w 

(m � (α − D ϕ (G θ (z)))) (4) 

he objective of inner layer in (4) is to select an optimal mask 

atrix m 

∗ when other parameters θ, ϕ are fixed. To simplify the 

hoice of mask matrix m , we empirically design a constant α as 

he criteria for evaluating quality (ideally, when the values from 

he output are lower than the criteria, the values in mask matrix 

orresponding to the same position are 1, and vice versa the val- 

es are 0). The constant α is determined by the standard deviation 

f output, it depends on the data distribution of D ϕ (G θ (z)) and 

he scope of the low quality area. When the range of low qual- 

ty area is large, α should be a larger value, so the output values 

 ϕ (G θ (z)) h,w 

, 0 ≤ h, w < N which are smaller than α are selected

s low-quality areas. Where M = { m 1 , m 2 , · · · , m n , · · · } is a matrix

et, in which each matrix has the same size with the discrimina- 

or’s output. The � denotes the dot product. 

The objective of the outer layer is directly to optimize the gen- 

rator parameters θ by using gradient descent algorithm within 

he defective receptive fields, which is selected by dot multiplying 

he output of discriminator with the optimal mask matrix m 

∗. 

.3. Adaptive global and local optimization method(Ada-OP) 

Adaptive global and local optimization method generates high- 

uality images by adaptive conducting global optimization (which 

ocuses on the whole image as the optimizing objective) and local 

ptimization (which only optimizes the low-quality areas within 

n image) during training generator. The local optimization model 

as been shown in previous section. To clarify the method, we first 

uild the global optimization model about the generator. 

b ject2 = min 

θ
E z∼P z [ max (0 , 1 − D ϕ (G θ (z)))] (5) 
4 
n the training process, different extent quality differences between 

eceptive fields and the quality differences between images both 

ill affect the selection of optimization mode. So it is necessary to 

efine some metrics that be able to measure global or local differ- 

nces in quality. We choose the mean( σl )(in a batch) of the quality 

tandard deviation between different receptive fields within an im- 

ge to measure the local differences. And the quality standard de- 

iation( σg ) between images is selected to measure the global dif- 

erence, where we regard the quality mean( μk ) between different 

eceptive fields within an image as the whole image quality evalu- 

tion. 

The global standard deviation σg can be used as the standard 

o measure whether it needs to conduct the global optimization or 

ocal optimization. Because if σg is high, there is a large range of 

uality differences between images, so global optimization should 

e carried out. Otherwise the local optimization is performed. The 

ntuition that we do this is: rough image first is generated (the 

verall quality should be basically the same), then the details are 

ptimized. The evaluation metric for global optimization is as fol- 

ows: 

k = 

∑ 

i, j y i, j 

h ·w 

, μ = 

∑ K 
k =1 μk 

K 

σg = 

√ ∑ K 
k =1 (μk −μ) 2 

K 

(6) 

here K is the batch-size of images and μk represents the quality 

f the k-th image. h, w denote the height and width of feature ma- 

rix. μ denotes the quality mean of all K images. σg is the global 

tandard deviation of all k images. Where β is a constant, we get 

t through the statistic of σg . According to the threshold selection 

f σg , the global standard deviation σg of input image for each 

poch is recorded during global optimization training, and then the 

alue of P v alue = 0 . 7 (set as β) is selected as the threshold. When

g ≥ β , global optimization is executed, otherwise local optimiza- 

ion is carried out. 

When implementing local optimization, the choice of the mask 

atrix depends on the size of unrealistic regions. Thus we di- 

ide the level of local bilevel optimization mode into I , I I and I I I ,

nd the corresponding constant α in formula (4) are respectively 

1 , α2 , α3 . The higher level ( I I I ) defines the larger local optimiza-

ion scope, so the constant α in formula (4) is bigger. The specific 

ocal standard deviation is as follows: 

σk = 

∑ 

i, j (y i, j −μk ) 
2 

h ·w 

, σl = 

√ ∑ K 
k =1 σk 

K 
(7) 

here σk is the quality standard deviation of all receptive fields in 

he k-th image. σk is utilized for measuring whether the quality of 

ocal areas in a single image is balanced. For K images, the mean of 

he quality standard deviation between the receptive fields is used 

s the local variance σl . When the local variance σl is large, it in- 

icates that there is a great difference in quality within a single 

mage, so the optimization area should be larger, and vice versa. 

wing to the mean of the different standard deviation correspond- 

ng to different local scope, the larger σl means larger internal dif- 

erence, so the level is higher. 

The threshold selection of local standard deviation σl is similar 

o the global, and the local standard deviation of each epoch data 

uring global optimization training is recorded, and then the value 

f P v alue = 0 . 4 (set as δ1 ) and P v alue = 0 . 7 (set as δ2 ) are selected as

he threshold. 

On the basis of the above definition, the specific local and 

lobal optimization method can be given as follows: 

b j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

Ob ject2 if σg ≥ β
Ob ject1 , where α = α1 if σl ≤ δ1 

Ob ject1 , where α = α2 if δ1 < σl < δ2 

Ob ject1 , where α = α3 if σl ≥ δ2 

(8) 



Y. Liu, H. Fan, X. Yuan et al. Pattern Recognition 123 (2022) 108375 

Fig. 3. Architecture of GL-GAN, where the red box is the receptive field corresponding to the element in feature matrix. The network on the top is the generator G, and 

the network on the down is the discriminator D. Where SN, ConvTr, BN, Conv denote spectral normalization, ConvTranspose, Batch Normalization, Convolution respectively. 

The generator network includes six layers(SN, ConvTr, BN, ReLu) and one layer(SN, ConvTr, Tanh). The discriminator network includes six layers(Conv, LeakyReLu) and one 

layer(Conv, LeakyReLu) which is employed to obtain the feature matrix( 4 × 4 , 8 × 8 ). (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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here δ1 , δ2 are the threshold of σl and both constants to divide 

he local standard deviation into different limits. In the paper, lo- 

al optimization is divided into three local optimization modes, I: 

hen σl ≤ δ1 , the local standard deviation is low, and the value of 

 v alue = 0 . 2 in the feature matrix data is selected as α, which is set

s α1 . II: when δ1 < σl < δ2 , the value of P v alue = 0 . 5 in the feature

atrix data is selected as α, which is set as α2 . III: when σl ≥ δ2 ,

he local standard deviation is large, and the value of P v alue = 0 . 8 in

he feature matrix data is selected as α, which is set as α3 . Based

n the method, the generator performs adaptive global and local 

ilevel optimization. Finally, we give the Algorithm 1 to clarify the 

raining process. 

lgorithm 1 GL-GAN. 

nput : Real data X , batch-size m , epoch n, k G . Adam 

arameters, α, β1 , β2 

utput : G θ , D ϕ 

1: for i = 0 to n do 

2: Sample { x i } i ∈ I ∼ P d for real data. 

3: Sample { z j } j∈ J ∼ P z for random noise. 

4: Let y j = G θ (z j ) , ∀ j ∈ J. 

5: g ϕ ← the gradient of (2) . 

6: ϕ ← Adam (g ϕ , ϕ, α, β1 , β2 ) . 

7: for t = 0 to k G do 

8: out put = D ϕ (G θ (z j )) . 

9: Compute σg , σl according to Eq. (6),(7). 

0: Applying the global and local bilevel optimization model 

according to Eq. (8) 

11: g θ ← the gradient of (8) . 

2: θ ← Adam (g θ , θ, α, β1 , β2 ) . 

3: end for 

14: end for 

. Experiments 

To evaluate the effectiveness of the proposed GL-GAN, exten- 

ive experiments on CelebA, Oxford Flowers, CelebA-HQ and LSUN 
5 
hurch datasets are conducted. In this section, we firstly present 

xperimental datasets and the evaluative criteria. Then implemen- 

ation details consisting of model structure and some parameter 

ettings are shown. Next we present the results of GL-GAN numer- 

cally and visually and the comparison to state-of-the-arts. Finally, 

he ablation experiments investigate the role of feature map, spec- 

ral normalization and the adaptive global and local bilevel optimal 

ethod(Ada-OP). 

.1. Datasets and evaluative criteria 

We evaluate the proposed model using face datasets. Scenario 

atasets are also used to demonstrate the wide applicability of the 

L-GAN. 

CelebA CelebA [40] is a large face properties dataset with 

02,599 celebrity images. In the dataset, each image has 40 at- 

ribute annotations and 5 landmark locations, which can be used 

or attribute editing and face detection. And the size of the images 

s 178 × 218 . In the paper, the size of images is resized to 128 × 128

or training and 64 × 64 for comparison. 

Oxford Flowers Oxford Flowers [41] is a flowers dataset which 

as approx 8K images of 102 different categories. In the dataset, 

ach class consists of between 40 and 250 images. In the paper, the 

ize of images is resized to 256 × 256 for training and comparison. 

Celeba-HQ Celeba-HQ [13] is a high-resolution face dataset 

hich is obtained based on CelebA. In our model, we choose the 

ize of 256 × 256 and 512 × 512 face images as training set. Each 

esolution has 30 K images. 

LSUN LSUN [42] is a high-resolution images dataset of 10 sce- 

arios, which includes bedroom, bridge, church, living-room scenes 

t al. The church dataset is used for training in our method. There 

ere 7,907 images in the dataset (the sum of training set and test- 

ng set), which is cropped and resized to 256 × 256 by bicubic in- 

erpolation. 

Evaluative Criteria Frechet Inception Distance is chosen 

FID) [43] for quantitative evaluation. The distance between the 

eal images and the synthetic images at the feature level is calcu- 

ated as a measure. So the smaller FID means the higher quality. 

ID shows the more consistent with human evaluation in the 

ealism and variation of the generated images. 
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Fig. 4. The process of local bilevel optimization method, where f is the feature matrix of discriminator output. The red point denotes the element is smaller than α in 

feature matrix, so the value is 1 and the black point is 0. The local optimized matrix is obtained by dot multiplying the Mask with the feature map f , where the white dot 

represented the retained measurement value of the low-quality area, and the black dot is 0. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 5. Randomly generated high-resolution images by GL-GAN method on LSUN church dataset. 
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Table 1 

Running time(where hrs denotes hours) and FID comparison be- 

tween different models in CelebA datasets about 128 × 128 and 

64 × 64 resolution. 

Method FID(128) time(hrs) FID(64) time(hrs) 

WGAN-GP 30.37 47.52 25.47 15.12 

SNDCGAN 28.53 18.96 12.28 7.92 

SAGAN 38.51 33.84 46.87 12.96 

WGAN-QC 16.33 22.08 12.9 14.4 

CR-GAN 16.97 - - - 

ICR-GAN 15.43 - - - 

IP-GAN - - 10.15 - 

OURS 12.37 12.24 8.3 5.04 
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.2. Implementation details 

The model of GL-GAN is put forward on the basis of DC- 

AN . The model is effective to boost convergence and improve 

mage performance with a lightweight network. Generator( G ) 

s composed of a series of basic unit, whose architecture is 

onvTranspose-BatchNorm-ReLU and 7 units in total for the 256 ×
56 generated images. The input is a random vector of size 100 × 1 

rom the standard normal distribution. Except for the ConvTrans- 

ose of first layer with parameters (4,1,1) for the kernel size, stride, 

ooling, all other layers are (4,2,1). Discriminator( D ) is the same as 

he normal classifier with Convolution-LeakyReLU as a basic unit 

ayer, with (4,2,1) for the kernel size, stride, pool of convolution 

ayer in units. The input is generated image and real image and 

here is 6 units in total and the last layer(Convolution with (1,3,1,1) 

or output channel,kernel size,strid,pooling) is employed to obtain 

he feature matrix( 4 × 4 , 8 × 8 ). The specific network architecture 

an be referred to Fig 3 . Meanwhile, the parameters of the genera- 

or and discriminator respectively are carried out whole and local 

pectral normalization to stabilize training. 

Except for the WGAN-QP( 64 × 64 ) model (which is trained 

n the NVIDIA TITAN Xp and has higher operating efficiency 

han NVIDIA TENSLA V100), CR-GAN and ICR-GAN (the data from 

he original article), all experiments are conducted on the same 

VIDIA TESLA V100. GL-GAN adapts the Hinge-loss function and 

dam optimization method with β1 = 0 . 5 and β2 = 0 . 999 . By de-

ault, the learning rate for generator is 0.0 0 04 and for discrimina- 

or is 0.0 0 01 in CelebA. The learning rate is kept unchanged during 

raining with 1:1 balanced updates for the discriminator and gen- 

rator. Except the CelebA dataset’s batch-size is 64, the rest is all of 

6. In addition to 30 epochs trained on CelebA, the rest are trained 

ith 70 epochs. 
6 
.3. Comparison to state-of-the-arts 

GL-GAN is applied to CelebA, Oxford Flowers, CelebA-HQ and 

SUN church datasets to show the effectiveness of our method. 

he images randomly generated with the model on CelebA, Oxford 

lowers and CelebA-HQ datasets are shown in Fig 2, Fig 7 , Fig 6 ,

nd Fig 5 presents the generated images on LSUN church. From 

he perspective of qualitative analysis, it can be seen that the GL- 

AN can achieve a relatively outstanding effect on high-resolution 

mages whether the resolution is 64 × 64 or 512 × 512 . Although 

here are still some minor flaws in the image, our method is the 

rst to generate high-resolution images via a lightweight model. 

In addition, the implementation of GL-GAN is beneficial to 

mproving the convergence speed of the model and reducing 

he running time. The Table 1 lists the FID score and training 

imes for the CelebA dataset in 128 × 128 and 64 × 64 resolu- 

ion. The comparison models about CelebA dataset include WGAN- 
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Fig. 6. Randomly generated high-resolution images by GL-GAN method on Oxford Flowers( 256 × 256 ) dataset. 

Fig. 7. Randomly generated high-resolution images by GL-GAN method on Celeba-HQ512 dataset. 

Fig. 8. The loss curves about applying spectrum normalization of the different degree on the CelebA dataset. 

Table 2 

Running time (where hrs denotes hours) and FID comparison between dif- 

ferent models in Oxford Flowers datasets about 256 × 256 resolution. The 

results of ProGANs and StyleGAN come from the article [28] . 

Method Real Images GPU used Training Time FID( ↓ ) 
WGAN-GP 50K 1 V100-32GB 23.3hrs 60.86 

ProGANs 10M 1 V100-32GB 104hrs 60.40 

StyleGAN 7.2M 2 V100-32GB 33 hrs 64.70 

GL-GAN 50k 1 V100-32GB 16.3hrs 51.30 

Table 3 

FID comparison between different models in CelebA-HQ 

datasets where MD and HQ denotes model and CelebA-HQ256 

dataset. FID is based on 50,0 0 0 generated samples compared to 

training samples. 

MD SNGAN AFHR IP-GAN StyleALAE OURS 

HQ 24.46 20.78 20.93 19.21 19.09 
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P [8] , SNDCGAN [9] , SAGAN [10] , CR-GAN 

1 [25] , ICR-GAN [26] ,

P-GAN [30] ,WGAN-QC [22] and GL-GAN. In a shorter time, our 

odel can generate higher quality images, whether at 64 × 64 

r 128 × 128 resolution(see Table 1 ) in CelebA. Compared with 
1 The codes of CR-GAN, ICR-GAN, IP-GAN, AFHR and StyleALAE aren’t open source, 

o we just use the relevant results in the original article for reference. 

4

G

7 
GAN-QC, the training time of our method is reduced by almost 

alf while maintaining high quality images. We improve the state- 

f-the-art FID from 15.43 to 12.37 in 128 × 128 resolution and from 

2.28 to 8.3 in 64 × 64 resolution about CelebA dataset, which 

chieves state-of-the-art image synthesis result. 

Table 2 shows the results of the proposed method on Oxford 

lowers dataset. The baseline models include WGAN-GP [8] , Pro- 

ANs [13] and StyleGAN [12] . In Table 2 , the row of real images

eans the number of images which are used to calculate FID. 

L-GAN can synthesis the highest quality images(FID:51.3) with 

he lowest training time. The comparison models about CelebA- 

Q include SNGAN [9] , AFHR [29] , IP-GAN [30] , StyleALAE [31] and

ur model in Table 3 . In CelebA-HQ, our method also achieves 

elatively great performance (Fid:19.09). Although our results are 

lightly superior to StyleALAE (Fid:19.21), we can achieve almost 

he same effect using a simple network structure in a shorter time, 

omparing with StyleALAE which owns complex network archi- 

ecture and takes much time to train. The aforementioned results 

how that our method boosts the convergence and yields high- 

uality images owing to the adoption of global and local optimiza- 

ion method. 

.4. Ablation study 

In this section, we analyze the validity of some methods used in 

L-GAN, including the effectiveness of local spectral normalization 
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Fig. 9. Generated images in different training modes about CelebA dataset. 

8 
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Table 4 

FID scores about CelebA(128) datasets with different 

degree of spectrum norm on the base+patch8 method. 

Method no-norm local-norm global-norm 

FID 40.01 14.09 171.02 

Table 5 

The FID on CelebA(128), CelebA-HQ and LSUN dataset un- 

der different cases. FID is based on 10,0 0 0 generated sam- 

ples and training samples. 

Method CelebA CelebA-256 LSUN 

base 21.24 35.75 56.59 

base + path4 16.67 20.63 51.29 

base + path8 14.09 28.96 49.70 

base + path4+Ada-OP 12.37 21.61 38.66 

base + path8+Ada-OP 12.86 20.35 41.14 
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local-norm), feature map method and Ada-OP method in improv- 

ng the stability, focusing out the low-quality regions and generat- 

ng high-quality images. 

Spectral Normalization In terms of stability, the method of ex- 

cuting global and local spectrum norm to generator and discrimi- 

ator respectively(called local-norm) is more effective. In Fig 8 and 

able 4 , we both present the results by applying different degree 

pectral norm with model, where no-norm, local-norm and global- 

orm respectively represent no, local and global implementation 

f spectrum normalization. As can be seen from the Fig 8 (a), the 

oss curve about D has great change and about G is fairly unstable 

hen without spectral normalization. The reason could be that it 

s not enough to stabilize the training only by regularization tech- 

iques. In contrast, the loss curve about D hardly changes in the 

ondition of the global spectral norm(see Fig 8 (c)). It indicates that 

he global spectral(about G and D) norm will lead to the strict 

arameter limitation, which has a negative effort to convergence 

peed. 

Compared with no-norm and global-norm method, the curve of 

he local-norm implies that the model realizes the mutual progress 

etween generator and discriminator with stable loss change. One 

ossible explanation is that local-norm method has a certain lim- 

tation on parameters and is beneficial to the stable training. Be- 

ides, we also show the FID of images about implementing the 

hree methods in Table 4 , which can see that the FID score (14.09)

btained by local-norm is the lowest. These results both demon- 
ig. 10. Standard deviation changes curves in different training modes about CelebA. s_in

s the number of iterations and the vertical axis is the standard deviation. 

9 
trate that applying local-norm with model is effective to stabi- 

ize training and further improve the generation quality. The base- 

ine(base) mentioned later in the paper refers to the method of 

dapting local-norm on the original model. 

Feature Map Owing to the appearance that some local regions 

ave poor generation quality within some generated images com- 

ared with other regions, the feature map, which is as the out- 

ut of discriminator, is applied to the model to further select 

he low-quality regions. It can be seen from the Fig 1 that the 

utput’s feature map can accurately find the low-quality regions 

i.e., the red region), which implies that it is reasonable to us- 

ng feature map as a basis for detail modification. We experiment 

n CelebA, CelebA-HQ and LSUN datasets under different condi- 

ions respectively(i.e., base model, base+patch4 and base+patch8). 

s can be seen from the Table 5 , the base+patch(14.09 for CelebA, 

0.63 for CelebA-hq256 and 49.70 for LSUN-church) method has 

 lower FID score compared with the base method(21.24 for 

elebA, 35.75 for CelebA-hq256 and 56.59 for LSUN) in all the 

hree datasets, where base, patch4, patch8 and Ada-OP respec- 

ively denote using the local-norm method in original models, us- 

ng the size of 4 × 4 feature map, using the size of 8 × 8 feature

ap and using the adaptive global and local bilevel optimization 

ethod. The low FID scores of the feature map method on three 

atasets show that it is general to improve the synthetic image 

erformance. 

Ada-OP Based on the feature map obtained by discrimina- 

or, we carry out adaptive global and local bilevel optimization 

ethod(Ada-OP) according to local and global standard deviation 

f the feature map. To test the performance of the method, we 

how the change curves of standard deviation under the situa- 

ion of applying or not the method. In Fig 10 , s_in and s_out de-

ote local and global standard deviation respectively. Compared to 

ig 10 (a) (without the method), the change ranges of two stan- 

ard deviations are both smaller and more stable with Ada-OP 

 Fig 10 (b)). In addition, we can observe that the generated im- 

ges look more realistic with fewer artifacts in Fig 9 (b) than the 

mages in Fig 9 (a) (the artifact images marked with red boxes). 

rom Table 5 , it achieves the optimal FID with base+patch+Ada-OP 

ethod in all three datasets(12.37 for CelebA, 20.35 for CelebA- 

Q256 and 38.66 for LSUN). Compared to the baseline, FID 

cores respectively decrease by 15 points and 17 points on the 

elebA-HQ256 and LSUN by using base+patch+Ada-OP method in 

able 5 . These results both demonstrate that Ada-OP is effective 

o reduce the inner difference and accurately modify low-quality 

egions. 
,s_out denote local and global standard deviation respectively. The horizontal axis 
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. Conclusion 

Owing to the imbalance of quality distribution within a gener- 

ted image where some poor-quality areas appear compared with 

ther regions and low training efficiency, we proposes an adaptive 

lobal and local bilevel optimization model (GL-GAN). The model 

daptively optimizes the image from both global and local aspects. 

iming at local optimization, a local bilevel optimization model 

s proposed. Based on the feature matrix from the discriminator’s 

utput in which each element measures the quality of a receptive 

eld of the image, the local bilevel optimization model firstly finds 

ut the region with poor generation quality, and then optimizes 

nly this region to guide the update of generator parameters. GL- 

AN is allowed to effectively avoid the nature of generated images’ 

mbalance by local bilevel optimization model. 

Furthermore, we conduct the adaptive global and local bilevel 

ptimization method(Ada-OP) based GL-GAN theory. On account 

f the quality feature matrix from the discriminator’s output, Ada- 

P adopts the local and global quality standard deviation as the 

ptimized mode measure. High-quality images are generated in 

 complementary and promoting way, where global optimization 

s to optimize the whole images and the local is only to opti- 

ize the low-quality areas. The computational efficiency is greatly 

mproved through Ada-OP, which provides an idea for the low- 

fficiency models. To stabilize training, we investigate the spec- 

ral normalization and apply the local-norm to our model. On the 

ataset CelebA, Oxford Flowers, CelebA-HQ and LSUN, the conver- 

ence speed and the quality of image both have an excellent im- 

rovement. 

We note that our method could easily only select the low- 

uality rectangular receptive field. And there may be an overlap 

etween rectangular receptive fields. Further research is needed in 

his regard. Another, as an interactive optimization method, Ada- 

P can achieve adaptive optimization to a certain extent by us- 

ng quality standard deviation of feature matrix as an evaluation 

ndex, but it also has some limitations, which needs to be fur- 

her studied. We will figure out the more appropriate local and 

lobal optimization method. In the field of application, interesting 

ork is extending GL-GAN to some lightweight applications, such 

s edge computing and mobile devices. Another application of the 

roposed method is to transfer the frame of the adaptive local and 

lobal optimization to other models.In any case, GL-GAN provides 

n inspiration for the following work in improving the imbalance 

f generated image quality and low training efficiency. 
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